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Fuzzy Identification of Systems and Its
Applications to Modeling and Control

TOMOHIRO TAKAGI anp MICHIO SUGENO

Abstract— A mathematical tool to build a fuzzy model of a system where
fuzzy implications and reasoning are used is presented in this paper. The
premise of an implication is the description of fuzzy subspace of inputs and
its consequence is a linear input—output relation. The method of identifica-
tion of a system using its input—output data is then shown. Two applica-
tions of the method to industrial processes are also discussed: a water
cleaning process and a converter in a steel-making process.

I. INTRODUCTION

HE main purpose of this paper is to present a
mathematical tool to build a fuzzy model of a system.
There has been a considerable number of studies [1]-[3]
on fuzzy control where fuzzy implications are used to
express control rules. Most of those implications contain
fuzzy variables with unimodal membership functions since
those are linguistically understandable and thus called
linguistic variables. As for reasoning, the so-called com-
positional rule of inference or its simplified version is used.
However, when we use this type of reasoning together with
unimodal fuzzy variables for multivariable control, we have
much difficulty since we need many fuzzy variables, i.e.,
many implications; it is usual to use five variables in each
dimension of input space.

The authors have suggested multidimensional fuzzy rea-
soning [6] where we can surprisingly reduce the number of
implications. The study in this paper is related to the above
idea of reasoning, where a fuzzy implication is improved
and reasoning is simplified.

Recently some studies [4], [5] have also been reported on
fuzzy modeling of a system. Fuzzy modeling based on
fuzzy implications and reasoning may be one of the most
important fields in fuzzy systems theory. Here we have to
deal with a multivariable system in general and so there-
fore have to consider multidimensional reasoning method.

Generally speaking, model building by input-output
data is characterized by two things; one is a mathematical
tool to express a system model and the other is the method
of identification. A mathematical tool itself is required to
have simplicity and generality. The fuzzy implication pre-
sented as a tool in the paper is quite simple. It is based on
a fuzzy partition of input space. In each fuzzy subspace a
linear input—output relation is formed. The output of fuzzy
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reasoning is given by the aggregation of the values inferred
by some implications that were applied to an input.

This paper also shows the method of identification of a
system using its input—output data. As is well-known,
identification is divided into two parts: structure identifica-
tion and parameter identification.

In its nature structure identification is almost indepen-
dent of a format of system description. We omit this part
in the paper, so by identification we mean parameter
identification in fuzzy implications. However, a kind of
structure problem partly appears.

Finally this paper shows two applications to industrial
processes. One is a water cleaning process where an oper-
ator’s control actions are fuzzily modeled to design a fuzzy
controller. The other is a converter in the steel-making
process where the conversion process is fuzzily modeled
and model-based fuzzy control is considered.

Most fuzzy controllers have been designed based on
human operator experience and/or control engineer
knowledge. It is, however, often the case that an operator
cannot tell linguistically what kind of action he takes in a
particular situation. In this respect it is quite useful to give
a way to model his control actions using numerical data.
Further, if there is no reason to believe that an operator’s
control is optimal, we have to develop model-based control
just as in ordinary control theory. To this aim it is neces-
sary to consider a means for fuzzy modeling of a system.

1I. ForRMAT oF Fuzzy IMPLICATION AND
REASONING ALGORITHM

In this paper we denote the membership function of a
fuzzy set A as A(x), x € X. All the fuzzy sets are associ-
ated with linear membership functions. Thus, a member-
ship function is characterized by two parameters giving the
greatest grade 1 and the least grade 0. The truth value of a
proposition “x is 4 and y is B” is expressed by

|xis Aand yis B| = A(x) A B(y).
A. Format of Implications
We suggest that a fuzzy implication R is of the format

9xk)

ey

R:If f(x,is Ay, -, x, is A;) then y = g(xy, -
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where

y Variable of the consequence whose value is
inferred.

x,—x, Variables of the premise that appear also in
the part of the consequence.

A, — A, Fuzzy sets with linear membership functions
representing a fuzzy subspace in which the
implication R can be applied for reasoning,.

f Logical function connects the propositions in
the premise.

g Function that implies the value of y when

x, — x, satisfies the premise.

In the premise if A4, is equal to X; for some i where X; is
the universe of discourse of x;, this term is omitted; x; is
unconditioned.

Example 1:

R: If x, is small and x, is big then y = x; + x, + 2x;.

This implication states that if x; is small and x, is big,
then the value of y would be equal to the sum of x;, x,
and 2x,, where x; is unconditioned in the premise.

In the sequel we shall only use “and” connectives in the
premise and adopt a linear function in the consequence as
is seen in the above example. So an implication is written
as

R: Ifx,is A;and --- and x, is 4,

)

then y = py + pyx; + -+ +puXx,.

B. Algorithm of Reasoning

Suppose that we have implications R’ (i = 1,---,n) of
the above format. When we are given

s X1 = xl(c))

where x? — x? are singletons, the value of y is inferred in
the following steps.

1) For each implication R’, y' is calculated by the
function g’ in the consequence

yi=gi(x0, -, xD)
= p+ pix{, -, +pixy. (3)

2) The truth value of the proposition y = y’ is calculated
by the equation

— 0 ...
(xl_xl’..

ly=y|=|x0is A and - - - and xQ is 4% )| A |R|

(4)

where |* | means the truth value of proposition * and A
stands for min operation, and |x° is 4| = 4(x°), i.e., the
grade of the membership of x°.

For simplicity we assume

= (4i(xD) A o AL(x2)) AR

IR =1

)
so the truth value of the consequence obtained is

ly =yl = 4i(x)) A - A4(xR)-

(6)
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3) The final output y inferred from » implications is
given as the average of all y’ with the weights |y = y|:

_ Xy =y1xy
2y =yl

Example 2: Suppose that we have the following three
implications:

(7)

R!: If x, is small, and x, is small, then y = x; + x,
R?: If x, is big, then y = 2 X x;

R3:1f x, is big, then y = 3 X x,

Table I shows the reasoning process by each implication
when we are given x; = 12, x, = 5. The column “Premise”
in Table I shows the membership functions of the fuzzy
sets “small” and “big” in the premises. The column “Con-
sequence” shows the value of y' calculated by the function
g’ of each consequence and “Tv” shows the truth value of
|y = ;|- For example, we have

ly=y! = |x? = small}| A |x? = small,|
= small,(x?) A small,(xJ)
= 0.25.

(8)

The value inferred by the implications is obtained by
referring to Table I

025X 17+ 0.2 X 24 +0.375 X 15
- 0.25 4+ 0.2 + 0.375

= 17.8.

©)

C. Properties of Reasoning

We show two illustrative examples to find the perfor-
mance of the presented reasoning algorithm.
Example 3: Suppose we have two implications.

R‘:Ifxis_L then y = 02x + 9
2 10
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Fig. 1. Results of fuzzy reasoning.

R%: If x is;; then y = 0.6x + 2

Then Fig. 1 shows the relation of x and y, which is marked
by the symbol +. The line R’ shows the function in the
consequence of R’. The equation in a consequence can be
interpreted to represent a law that holds in the fuzzy
subspace defined in a premise.

Let us consider the difference between ordinary piece-
wise linear approximation method and the presented
method. If we take piecewise linear approximation, we first
divide input space into crisp subspaces and next build a
linear relation in each subspace. For example, in the case
shown in Fig. 1, we need another linear relation connecting
R! and R? It is easily seen that those three straight lines
are not smoothly connected. On the other hand, the pre-
sented method enables us to reduce the number of piece-
wise linear relations and also to connect them smoothly. It
is of crucial importance to reduce the number of linear
relations in a multidimensional case.

Further, with the fuzzy partition of input space, we can
put linguistic conditions to linear relations such as “x; is
small and x, is big.” Thus, for example, we can use the
variable that is observed only by man (see Section IV-B).

Example 4: Fig. 2 shows the input—output relation ex-
pressed by the implications of Example 2. In this case the
premises are two-dimensional. In the figure the curved
surface shows a highly nonlinear input—output relation
whose shape reflects the dominance of each implication in
its essentially applicable area and also the conflict of
implications in an overlapped area.

III. ALGORITHM OF IDENTIFICATION

As has been stated, we consider a fuzzy model consisting
of some number of implications that are of the format

If x,is A, and - - - and x, is 4,

then y =p,+p,-x; + - +p, - x;,
characterized by “and” connective and a linear equation.

For identification we have to determine the following
three items by using the input-output data of an objective
system.

1) x;,- -+, x, Variables composing the premises of im-
plications.
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Fig. 2. Results of fuzzy reasoning in example 2.

Combination of premise variables

+
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Premise parameters

1

Consequence parameters :

|

Fig. 3.

Outline of the algorithm.

2) Ay, -+, A, Membership functions of the fuzzy sets in
the premises, abbreviated as premise
parameters.

3) py, -+, p, Parameters in the consequences.

Notice that all the variables in a premise may not always
appear. The items 1) and 2) are related to the partition of
space of input variables into some fuzzy subspaces. The
item 3) is related to describing an input-output relation in
each fuzzy subspace.

We can consider the relation among three items
hierarchically from 1) down to 3). The algorithm of the
identification of implications is divided into three steps
corresponding to the above three items. We first give a
brief explanation of the algorithm at each step.

1) Choice of Premise Variables: First a combination of
premise variables is chosen out of possible input variables
we can consider. Next the optimum premise and conse-
quence parameters are identified according to the steps 2)
and 3), and also the errors between the output values of the
model and the output data of the objective system are
calculated. We then improve the choice of the premise
variables so that the performance index is decreased, which
is defined as the root mean square of the output errors.

2) Premise Parameters Identification: In this step the
optimum premise parameters are searched for the premise
variables chosen at step 1). Assuming the values of premise
parameters, we can obtain the optimum consequence
parameters together with the performance index according
to step 3). So the problem of finding the optimum premise
parameters is reduced to a nonlinear programming prob-
lem minimizing the performance index.

3) Consequence Parameters Identification: The conse-
quence parameters that give the least performance index
are searched by the least squares method for the given
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premise variables in the step 1) and parameters in step 2).

The outline of the algorithm is shown in Fig. 3. From the
next section we shall discuss the method in detail with an
illustrative example at each step.

A. Consequence Parameters Identification

In this section we show how to determine the optimum
consequence parameters to minimize the performance in-
dex, provided that both the premise variables and parame-
ters are given. The performance index has been defined
above as a root mean square of the output errors, which
means the differences between the output data of an origi-
nal system and those of a model.

Let a system be represented by the following implica-
tions:

R' Ifx, is A, -
then y =py + pi-x; + --+ +ph - x,

. 1 1
,and x, is Ay,

R" If x, is A7,---,and x, is A}
then y = pg + p7-x; + -+ +pi - x;.

Then the output y for the input (x;,- - -, x,) is obtained as

it
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where

Ap(x) A - - A (%)
ZAil(xij) A AAik(xkj)
J

Bij = (14)

(15)

n n n T
P= [P(l)»'",Po’Plp"',Pla'",P}a"',Pk] . (16)

Y= [y17' ) '>ym]T

Then the parameter vector P is calculated by

P=(X"X)"'Xx"y. (17)

It is noted that the proposed method is consistent with
the reasoning method. In other words, this method of
identification enables us to obtain just the same parameters
as the original system, if we have a sufficient number of
noiseless output data for the identification.

In this paper the parameter vector P is calculated by
a stable-state Kalman filter. The so-called stable-state
Kalman filter is an algorithm to calculate the parameters of
a linear algebraic equation that gives the least squares of
errors. Here we apply it to calculate the parameter vector P
in (17).

(Ai(xl) A AAI;!(xn)) '(P(i) +pixg s Hp Xk)

(10)

=
Il
3

1

Let 8; be
Ai(x) A -2 AL(x,)

S (Ai(x) A - A4 (x,)

i=1

B =

then

n
y=ZBi(P6+P§'x1+"' +P;c’xk)

3

(Pb B+ piexy Bt - +ph 5, ).
1
(12)

When a set of input-output data XijsXojst s Xg; =Y,
(j=1--- m) is given, we can obtain the consequence
parameters p{, pi,- -+, pi (i =1--- n) by the least squares
method using (12).

Let X (m X n(k + 1) matrix), Y (m vector) and P
(n(k + 1) vector) be

1

Blla' -

3

Blm””’

>

Bars x11 * Bur» -

Bnm’xlm : Blm" o

1(Ai(xl) A A (%))

Let the ith row vector of matrix X defined in (13) be x;

and the ith element of Y be y,. Then P is recursively
(11) calculated by (18) and (19) where S; is (n - (k + 1)) X (n -
(k + 1)) matrix.

Py =P+ Sy X0 '()’i+1 — Xiy1” Pi) (18)
S;-x,+x,.,°8S,

Si+1=Si_ - x’ x'+1 T’ H i=0519“'5m~1
T4 X0 80X

(19)

P=P, (20)

where the initial values of P, and S, are set as follows.

P,=0 (21)
S, = a - I (a = big number) (22)
where [ is the identity matrix.
s Xy - Bnl’ e
Xy Buse s X1 By
: (13)
s Xt B e
X" Bims s X Bum
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Fig. 5. Input-output data.

Example 5: Suppose in a system

if x, is _;_ then y = 0.6x + 2
if x; is __44‘0_ then y = 0.2x + 9.

Under the condition that the premises of the model are
fixed to those of the original system, the consequences are
identified from input—output data as follows, where the
noises are added to the data.

if x; is

0 7
if x; is _“4_
10

then y = 0.56x + 2.17

then y = 0.11x + 9.60.

Fig. 4 shows the noised ihput—output data, the original -

consequences, and the identified consequences.

B. Premise Parameters Identification

In this section we show how to identify the fuzzy sets in
the premises, that is, how to partition the space of premise
variables into fuzzy subspaces, provided that the premise
variables are chosen.
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For example, looking at the input—output data shown in
Fig. 5, we can see that the input—output characteristics
change as the input x increases. So dividing the space of x
into two fuzzy subspaces such that x is small or x is big,
we have a model with the following two implications:

if x is small then y = a;x + b,

if x is big then y = a,x + b,.

We next have to determine the membership functions of
“small” and “big” as well as the parameters a,, b, a, and
b, in the consequences.

As it is easily seen, to divide the spaces into some fuzzy
subspaces is to determine the membership functions of the
fuzzy sets in the premises. The problem is thus to find the
optimum parameters of their membership functions by
which the performance index is minimized.

We call this procedure “premise parameter identifica-
tion.” The algorithm is as follows.

1) Assuming the parameters of the fuzzy sets in the
premises, we can obtain the optimum parameters in the
consequences that minimize the performance index as dis-
cussed in the previous section.

2) The problem of finding the optimum premise parame-
ters minimizing the performance index is reduced to a
nonlinear programming problem. In this study we use the
well-known complex method for the minimization. Each
fuzzy set in the premises is determined by two parameters
that give the greatest grade 1 and the least grade 0, since a
fuzzy set is assumed to have a linear membership function.

Example 6: This example shows the idéntification using
the input—output data gathered from a preassumed system
with noises. The standard deviation of the noises is five
percent of that of the outputs. It has to be also noted that
we can identify just the same parameters of the premises as
the original system if noises do not exist.

It is of great importance to point out the above fact. If it
is not the case, we cannot claim the validity of an identifi-
cation algorithm together with a fuzzy system description
language.

Suppose the original system exists with the following two
implications:

ifxisL_ then y = 0.6x + 2
0 7
if x is——L then y = 0.2x + 9.
4 10

The functions in the consequences of the implications and
the noised input—output data are shown in Fig. 6.

The identified premise parameters are as follows. We can
see that almost the same parameters have been derived.
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Fig. 6. Consequences and noised data.

ﬁxis3;:::>~___ then y = 0.59x + 2.2

6.6

ﬁxm__ﬂé:i:; then y = 0.12x + 9.5.

10.0

C. Choice of Premise Variables

In this section we suggest an algorithm to choose pre-
mise variables from the considerable input variables. As
has been stated previously, all the variables of the conse-
quences do not always appear in the premises. There are
two problems concerned with the algorithm. One is the
choice of variables: to choose a variable in the premises
implies that its space is divided. The other is the number of
divisions. The whole problem is a combinatorial one. So in
general there seems no theoretical approach available. Here
we just take a heuristic search method described in the
following steps.

Suppose that we build a fuzzy model of a k-input
X1,* -+, X, and single—output system.

Step 1: The range of x; is divided into two fuzzy sub-
spaces “big” and “small,” and the ranges of the
other variables x,,- - -, x, are not divided, which
means that only x, appears in the premises of the
implications. This model consisting of two impli-
cations is thus

if x, is big, then - - -

if x; issmall, then--.-.

It is called model 1-1. Similarly, a model in which
the range of x, is divided and the ranges of the
other variables x,,x;,---,x, are undivided is
called model 1-2. In this way we have k-models,
each of which is composed of two implications. In

if x, is

0 8
Hﬁﬁ—::>k__
0 8

and x, is

and x, is
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Stage 3

stable

Stage 2

Fig. 7.

Choice of premise variables.

general, the model 1 — i is of the form

Step 2:

Step 3:

Step 4:

Step S:

if x, is big,

if x, is small;

then - - -

then - -- .

For each model the optimum premise parameters
and consequence parameters are found by the
algorithm described in the previous sections. The
optimum model with the least performance index
is adopted out of the k-models. It is called a
stable state.
Starting from a stable state at step 1, say model
1 — i, where only the variable x, appears in the
premises, take all the combinations of x; — x;
(j=1,2,---,k) and divide the range of each
variable in two fuzzy subspaces. For the combina-
tion x; — x;, the range of x; is divided into four
subspaces, for example, “big,” “medium big,”
“medium small,” and “small.” Thus we get k-
models each of which is named model 2-j. Each
model consists of 2 X 2 implications. Then find
again a model with the least performance index
just as in step 2 that is also called a stable state at
this step. "
Repeat step 3 in a similar way by putting another
variable into the premise.
The search is stopped if either of the following
criteria is satisfied.

1) The performance index of a stable state

becomes less than the predetermined value.
2) The number of implications of a stable
state exceeds the predetermined number.

The choice of the variables in the premises proceeds as is
shown in Fig. 7. '

Example 7: We show an example of identification. The
original system is also a fuzzy system with two inputs and
single output expressed by the implications as are shown

below.

then y = 1.2x; + 0.2x, + 1

then y = 2.5x; +2.1x, + 4
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Fig. 10. Identification data with noises.

In this system, the range of x; is divided into four fuzzy
subspaces and that of x, into two fuzzy subspaces. So the
number of implications is 4 X 2 altogether.

Fig. 8 shows a fuzzy partition of the input space in the
original system, i.e., the membership functions of the fuzzy
relation expressed in the premises.

Fig. 9 shows the input—output relation of the above
system. Now 441 input—output data of this system are
taken for the identification and noises are added to the
outputs, where the standard deviation of the noises is two
percent of that of the outputs. Fig. 10 shows the noised
data. Now the system is identified using these data.

Fig. 9. Input-output relation of the original system. Stage 1: Let us start from two models, each of which

consists of two implications. They are shown together with
if x, is_L and x, is —

”’.

77T

LTI LR

[R5
227772

v T A
2o

Y

then y = 1.7x; + 1.3x, + 2

4 10 7
if x; is _44- and x, is__é). then y = 0.5x; + 2.4x, + 8
if x, is _IOLM and x, 15;_ then y = 1.7x; + 1.3x, + 2
if x, is %__ and x, is._4 then y = 0.5x; +2.4x, + 8
if x, is __14_ and x, is OL then y = 0.3x; + 3.0x, + 5

7
if x, is _4 and x, 15_34 then y = 0.9x, + 0.9x, + 7



TAKAGI AND SUGENO: FUZZY IDENTIFICATION OF SYSTEM', 123

Fig. 11. Input-output relation of the model 1-1. Fig. 12. Input-output relation of the model 1-2.
their performance indices. Figs. 11 and 12 show the input—output relation of the models.
Model 1-1: (the Range of x, is Divided)
Implications

if x, is then y = —0.45x, + 1.82x, + 23.2

10 20
0 9.5

if x, is then y = 1.71x; + 3.09x, — 4.9

performance index = 2.55.

Model 1-2: (the Range of x, is Divided)
Implications

if x, is then y = —0.14x, + 0.65x, + 27.6

5.5 0
if x, is ; then y = 0.91x; + 2.06x, + 2.3

performance index = 3.73.

The model 1-1 is found to be a stable state at the stage 1 since its performance index is the minimum of the two. In fact
fig. 9 seems more similar to Fig. 11 than to Fig. 12. At the next stage we fix the variable X, in the premises.

Stage 2: In this stage the space of inputs is further divided. In the model 2-1 (Fig. 13), which is the extended one of the
nodel 1-1, the range of x, is divided into four subspaces, leaving that of x, undivided.

X, is 'o.golu.o— (small)

X, 1s ——54 (medium small) X;’s range only
x, is 123# (medium big)

x, is _5_4 (big)
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Fig. 13. Input-—output relation of the model 2-1. Fig. 14. Input-output relation of the model 2-2.

In the model 2-2 (Fig. 14), the ranges of x; and x, are The implications of the two models and their perfor-

newly divided in two fuzzy subspaces, respectively. mance indices are obtained this time as follows.
Model 2-1:

\ Implications
x, is 'o.so__f%T_ (small,) : ,
: if x, is%_ then y = 1.90x, + 3.65x, — 8.3
x, is __L (big,) x,’s Tange E

51 20.0

then y = 1.46x; + 0.69x, + 11.0

:

Xz s — — (small,) x,’s range :
: e LN - 78 4
: if x; is — > then y 0.58x, + 0.78x,+ 36
X218 0.5 100 (big, )
Notice that this partitior} c?f the range of X1 is' different if x, is ~ then y = 0.88x, + 2.22x, — 2.8
from that of model 1-1. This is because the optimization of 5.9 200
fuzzy sets concerned with x, is performed together with
those concerned with x,. performance index = 1.91.
Model 2-2:
Implications
if x, is W__\lr and x, is L&o > then y = 2.31x; — 1.36x, — 1.6

0.5 10.0

and x, is ; then y = —0.92x, + 2.24x, + 26.4

0.0 71

if x, is — and x, is then y = 1.76x; + 1.99x, + 6.8

16.0

N

if x; is
1 20.0

N

if x, is —= and x, is then y = 0.84x; + 0.51x, + 11.2

performance index = 1.40.
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The model 2-2 is now found to be a stable state at stage 2.

Stage 3: We show the implications and the performance indices of two models (Figs. 15 and 16) extended from the
model 2-2.

Model 3-1:
Implications : ;
if x; is —o.g();m_ and x, is OL” then y = 1.14x, — 0.38x, + 1.8
if x; is # and x, 15_2‘7410;0 then y = 2.33x;, + 1.98x, + 5.6
if x; is —44 and x, is # then y = 2.20x, + 0.26x, + 1.3
if x, is —44 and x, is _24 then y = —0.04x; + 1.07x, + 10.0
if x, 15_8;163__ and x, is OA“__ then y = 1.65x; + 1.43x, + 1.9
if x, is :8;163__ and x, is —24 then y = 0.62x, + 2.23x, + 7.9
if x, is __1254200 and x, 15# then y = 0.74x, + 2.84x, — 2.7
if x, is _14 and x, is —24 then y = 1.12x; + 0.63x, + 4.8

performance index = 1.08

where the partition of the range of x, is four and that of x, is two, as is seen.

Model 3-2:
Implications
if x, is 00# and x, is # then y = 1.78x, + 1.71x, — 2.0
if x, is %0_ and x, 15_14 then y = 2.84x, + 4.04x, — 17.5
if x, isT:OBW and x, is ;3‘ then y = 1.39x, + 1.41x, + 0.2
if x, is L and x, 15_4 then y = 1.87x, + 2.07x, + 5.7
0.0 16.0 31 10.0
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Fig. 15. Input-output relation of the model 3-1.

‘vA‘l"” "
57

Fig. 16. Input-output relation of the model 3-2.

and x, is >

if x; is __4. and x, is
5.0 20.0
if x; is —4 and x, is
5.0 20.0
if x; is_L and x, is
5.0 200 31

performance index = 1.33

At stage 3 the model 3-1 is found to be a model with the
same structure as the original system, which is of course a
stable state.

We can say that the presented method enables us to
derive almost the same premise parameters as those of the
original system. We can also recognize that Fig. 9 is almost
the same as Fig. 15.

The choice of the premise variables has proceeded in this
example as is shown in Fig. 17.
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Stage 3

Stage 2

stable

@

Stage 1

Fig. 17. Choice of the premise variables.

IV. APPLICATION TO FUZZY MODELING

This chapter shows two practical applications of the
proposed method to real industrial processes. The first one
is the fuzzy modeling of a human operator’s control actions
in a water cleaning process. The obtained model may be
directly used in place of an operator to control the process.

The other one is the fuzzy modeling of a converter in a
steel-making process. The relation betweer: the input—out-
put of the converter is so complex that an appropriate
algebraic model has not been developed. The obtained
fuzzy model is applied to the control of the converter, and
the results are compared with the case when an operator
controls it without a' model.

> then y = —1.47x; — 0.72x, + 40.2

= then y = 0.67x; + 0.40x, + 15.2

s then y = 0.15x; + 0.19x, + 26.8

=5 then y = 0.92x; + 1.00x, + 5.9

A. Fuzzy modeling of human operator’s control actions
Water Cleaning Process: We shall now show an example
where an operator’s control actions are fuzzily modeled.
The control process is a water cleaning process for civil
water supply as is illustrated in Fig. 18. In the process,
turbid river water first comes into a mixing tank where
chemical products called PAC and also chlorine are put
and mixed in the water. Then the mixed water flows into a
sedimentation tank where the turbid part of water is
cohered with the aid of PAC and settled to the bottom.
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lPA C

River
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Water
Mixed Treated
Mixing Water Water
Tank Cleaned
Sedimentation > Filtration Water
Tank Tank I
Fig. 18. Water cleaning process.
TABLE I1
l TE ' AL | PH
TUBL PAC TUB2 TUBL PH TE AL PAC TUB2
— Operator Process
10.0 7.1 18.8 53.0 1300 1.0
o 17.0 7.0 18.6 50.0 13C0 1.0
22.0 7.3 19.4 46.0 1400 2.0
50.0 7.1 19.5 40.0 1400 1.0
Fig. 19. Diagram of control process. 9.0 7.3 23.3  48.0 900 4.0
11.0 7.1 20.7 50.0 900 1.0
12.0 7.2 21.3 50.0 900 3.0
. . . 14.0 7.2 23.6 53.0 900 4.0
After sedimentation, which takes about 3—5 hours depend- 35.0 7.0 17.8  35.0 1200 A
ing on the capacity of the tank, the treated water finally PR 16-8 b9 100 10
flows into a filtration tank producing clean water. Chlorine 18.0 7.1 17.3  40.0 1100 1.0
. eqe . 12.0 7.2 18.8 55.0 900 3.0
is added only for the sterilization of the water. 8.0 7.2 18.0  30.0 1000 s
The main control problem of a human operator in this A S 20
process is to determine the amount of PAC to be added so 35.0 7.0 17.7  42.0 1200 1.5
. g . 30.0 7.0 17.3 41. .
that the turbidity of the treated water is kept below a 160 7 193 420 nee 1
certain level. The optimal amount, not too little, nor too
much, depends on the properties of the turbid water. The
amount of PAC must be controlled also from an economi-
cal point of view. small big

The process is characterized by a lack of any physical
model, significant variation of the turbidity of river water
and the fact that turbidity itself is not clearly defined nor
accurately measured. So an operator’s experience is a key
factor in this control process.

However, a number of variables influencing sedimenta-
tion process have been found so far that can be measured.
Let us first list all the variables concerned.

TB1 Turbidity of the original water (ppm).
TB2 Turbidity of the treated water (ppm).
PAC Amount of PAC (ppm).

TE  Temperature of water (°C).

PH PH.

AL  Alkalinity.

CL  Amount of chlorine (ppm).

For example, if TE is lower, then more PAC is necessary.
Both PH and AL affect nonlinearly the necessary amount
of PAC. The optimal PAC depends on these variables; the
relation among them is not clear. There are some other
variables influencing the process, e.g., plankton in the river
water, which increases in springtime but cannot be mea-
sured at present.

In most water cleaning processes a statistical model has
been built. However the models are not accurate. These
cover only steady state, i.e., a small range of TB1. TB1
increases for example 100 times more when it rains. So an

If (PHis*), (ALis*) and (TE is*)

7.25 7.30 7.50 PH

6.90

small big

35.0 50.9 53.0 60.0 AL
small big

16.6 18.7 20.1 %6 TE

Fig. 20. Partition of the ranges of premise variables.

operator controls PAC taking into account of TB1, TE,
PH, AL, and TB2. Now our process can be illustrated as in
Fig. 19.

Derivation of Control Rules

We have a lot of operation data where all the variables
are measured every hour for four months. That is, the
number of data is 24 hours X 30 days X 4 months = 2880.
Table II shows a part of these.

Among the data we have used about 600 for the identifi-
cation taken in June and July. June in Japan is a rainy
season and July is summer.

According to the identification algorithm discussed pre-
viously, eight control rules are derived that can be called a
fuzzy model of operator’s control as is stated, where a
control rule is of the form

thenPAC=p0+p1~TB1+p2-TB2+p3-PH+p4-AL+p5-TE
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PH, AL, and TE are picked up as premise variables and their ranges divided into small and big, as shown in Fig. 20. The
number of the control rules is thus 2% = 8. Those are shown in Fig. 21.

g

1. . .
R': if PHis S » ALis == T and TE is TG TN
then PAC = 2664 - TB1 — 8093 - TB2 + 11230 - PH — 1147 - AL — 2218 - TE + 8858
e N RN | s
R*: if PHis — e , ALis =5 >0 and TE is == Sve
then PAC = 124 - TB1 — 427 - TB2 + 761 - PH + 52 - AL — 17 - TE — 7484
R3: 1fPHls‘L, AL is __4 and TE is A_
6.90 7.30 50.9 60.0 16.6 201
then PAC = 42 - TB1 — 54 - TB2 — 1368 - PH + 10 - AL + 158 - TE + 7270
‘. LN\ , S , s
R*:. if PHis — e , ALis = =5 and TEis — T 7Y
then PAC = 5-TB1 — 34 - TB2 — 221 - PH — 8 - AL + 40 - TE + 2202
R*: if PHis L—, AL is L and TE is L
725 7.50 35.0 53.0 6.6 20.1
then PAC=3-TB1 — 6 - TB2 + 2110 - PH — 13 - AL + 2 - TE — 13918
R®: if PH s L AL is L and TE is __4
725 7.50 35.0 53.0 18.7 201
then PAC=22-TB1 +11-TB2+ 64-PH — 8- AL — 9 - TE 770
R7: if PHis L , ALis _4 and TE is L
7.25 7.50 50.9 60.0 16.6 20.1
then PAC = 159 - TB1 — 14 - TB2 + 2337 - PH — 25 - AL — 69 - TE — 14819
N | . | :
R°®: if PHis =53 S , ALis = = and TE is = —=
then PAC= —13-7TB1 — 16 - TB2 +29-PH + 6 - AL + 41 - TE — 317
Fig. 21. Control rules.
Results of Fuzzy Control model is represented in (23) that is usually used in a water

The performance of the derived control rules is tested by cleaning process.
using testing data. The results are shown in Table III as
well as operator’s control input and the results of a statis- PAC = 9.11VTB1 — 79.8 PH + 12.7CL + 1255.6.
tical model, where we used 38 testing data. The statistical (23)
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TABLE III

Operator Statistical Fuzzy
Model Model
1300 994.7 1308.6
1300 995.9 1027.4
1300 1119.6 1063.0
1400 1151.1 1386.2
1400 1409 .4 1551.1
900 1066.4 923.9
900 1068.9 965.5
900 1012.3 875.4
1200 1286.8 1236.7
1200 1246.8 1172.6
1100 1151.4 1075.9
1100 1199.5 1115.1
1100 1159.4 1130.5
1000 985.7 934.1
1000 1009.3 973.8
1000 1038.2 984.6
1200 1398.3 1285.3
1200 1290.6 1160.8

It is seen that operator’s control actions are well mod-
eled in the form of fuzzy control rules. The average of the
absolute differences between the results of the fuzzy model
and the operator, and those between the results of a
statistical model and the operator are, respectively,

48.5
128.0.

These results show the excellence of the fuzzy model.

fuzzy model
statistical model

B. Fuzzy Modeling of Converter in a Steel-Making Process
and its Control

The Problem

The steel-making process consists of the following four
steps.

1) Iron ore is melted in a blast furnace. The obtained
molten iron called hot pig is removed by a torpedo
car into a converter after desulfurization.

2) In a converter, scrap, iron ore, and burnt lime are
first added to hot pig, and then decarbonization and
dephosphor are performed by oxygen below. After
that various alloys are added for adjusting the in-
gredients of produced steel.

3) Floating slag is taken away and the amount of
ingredients is readjusted in a ladle refining process.

4) It is then cast and finally cut into appropriate
figures.

Each step except the final half of the fourth step depends
on a human operator’s trained control because it is very
difficult to build a process model.

A steel-making plant produces various kinds of steel
according to its ingredients. Especially the manganese ratio
in the products is required to be variously adjusted.

In this section we deal with the problem of determining
the amount of manganese alloy to adjust the manganese
ingredient of produced steel in step (2). This process is the
most difficult to be controlled among the ingredients ad-
justments.

We now list all the variables possibly concerned with the
process.

Mnl Original ratio of manganese in input iron.

129
control iunput output
MA Mn2
— > converter ——
TMnl THP T[o] T[Si] [sc
external input
Fig. 22. Conversion process.

Mnl 5 Mn2* - Mnl BA AMA Plant
Mn2* (converter) Mn2

[o]
[s1] >
HP
SG

Operator

Fig. 23. Control of manganese ratio.

Mn2 Final ratio of manganese in produced steel.
Mn2* Required ratio of manganese in produced steel.
MA  Ratio of manganese alloy put into input iron.

HP  Hot pig ratio of input iron.

[O] Ratio of oxygen in input iron after oxygen blow.
[Si]  Ratio of silicon of hot pig.

SG  State of floating slag.

Here input iron consists of hot pig and scrap. Among
those, SG is physically measured only after the conversion
process is finished. But it can be evaluated by operator’s
observation before that. Fig. 22 shows the conversion
process.

Manganese alloy is added into hot pig after the oxygen
blow process to produce steel such that the percentage of
manganese ingredient, Mn2, becomes a required value
Mn2* and its ideal amount can be calculated by (24),
based on physical analysis.

MA = (Mn2* — Mnl). (24)

However, the actual ratio of manganese in the products
is usually less than the physically estimated value from
Mnl and MA because of absorption by slag or other
reasons due to, for example, various other ingredients in
steel. So a human operator predicts Mn2 by referring to
[O], [Si], HP, and observing the state of slag SG etc., and
controls MA by correcting the guided value by (24) so that
Mn2* is attained. Fig. 23 shows the present situation of
manganese control.

The past trials to derive a mathematical model of the
converter with respect to manganese control have not been
successful where the inputs are the observable variables
and the output is the manganese ratio of the produced
steel.

For the purpose of control, we try to build a fuzzy model
of the converter by finding some clues from an experienced
operator’s way of control. This approach has the following
advantages.

1) His manner tells us how he recognizes the characteris-
tics of the conversion process based on his experience. For
example we can know important variables that should be
put into premises of fuzzy implications.
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TABLE IV TABLE V
I |
HP AMn SG MA choice of premise | performance | correlation
variable | index | coefficient

93.90 1.11 0.30 14.00 | |
94.00 14.52 -0.08 135.00 T T
93.10 5.22 -0.05 54.00 [Stage 1] HP | 5.20 | 0.98975
93.60 5.36 -0.43 53.00 | |
85.60 13.56 0.11 129.00 MA* | 4.87 | 0.99105
85.80 11.55 0.12 106.00 | |
86.40 11.88 -0.06 113.00 SG | 5.54 | 0.98840
93.10 13.85 0.16 119.00 | |
88.50 12.27 -0.02 129.00 | |
93.00 11.69 -0.03 127.00 [Stage 2] MA - HP | 4.17 | 0.99344
93.00 9.86 -0.01 98.00 | |
95.00 4.96 -0.13 46.00 MA - MA | 4.23 | 0.99234
94.70 2.19 0.01 25.00 | |
85.00 1.89 -0.10 23.00 MA - SG* | 4.06 | 0.99378
87.50 14.26 -0.09 121.00 | |
90.50 11.52 -0.10 112.00
90.10 12.59 -0.06 116.00 * indicates a stable state at each stage
90.20 5.67 -0.28 60.00

If MA = —A—: SG = —4— — then AMn = —0.12HP + 7.77TMA + 22.18

1 10.7 -1 .37
If MA = le__ SG = 43;1' then AMn = 0.21HP + 9.03MA — 14.07
.7 —. .
If MA = ‘4 SG = L T then AMn = 0.87HP + 4.92MA — 17.56
93 16 —43 :
If MA = 4 SG = ‘4 then AMn = —0.27HP + 7.34MA + 49.70
X -1 37

Fig. 24. Fuzzy model of converter.

2) We can even use input variables that only he can
measure, for example, by just watching. Those variables are
easily used as premise variables of our model. Since a
model is of the form “if - - - then - - - ,” the obtained model
may be refined by his knowledge.

3) We can derive fuzzy control rules from the model,
rather than from his control actions which may not be the
best from a quantitative point of view. Needless to say,
fuzzy control rules are easily understood qualitatively by
him and we can adjust control rules also by his way of
control. This is a very important point if an operator
remains as a key essence in process control.

Modeling: We have taken 61 operation data from among
the ones obtained in one month, and have used them for
the identification of the conversion process. Further, we
prepared 20 testing data different from the above identifi-
cation data to check the validity of the obtained model.
Table IV shows some of the data. The input and output
variables of the converter model are as follows:

[input]
P=- hot Pe_ _ h.Ot P (percent)
inputiron  hot pig + scrap

manganese alloy

MA = - -
input iron

X 10! (percent)

SG = indication about softness of slag
[output]
AMn = Mn2 — Mnl = increment of manganese ratio.

In this study, other variables [O] and [Si] are found not
to seriously affect the process and so are deleted. For SG
we conventionally use the measured values after the con-
version is finished, which can be replaced by operator’s
observation. An experienced operator can measure SG
rather qualitatively such as soft, medium, or hard. For this
reason we put SG only into the premises for conditioning
the input—output relation and do not use it in the conse-
quences.

According to the proposed identification algorithm, each
range of MA and SG is divided. The range of HP has
remained undivided. Finally we have obtained four impli-
cations as are shown in Fig. 24.

The premise variables, the performance indices of the
models, the correlation coefficients of the original output
and models’ output through the identification process are
shown in Table V.

As is seen in the model, the space of each premise
variable is divided only into two fuzzy subspaces. This is
mainly because of the shortage of data. Notice that there
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TABLE VI
Actual Fuzzy Statistical
output model model
143.00 135.18 136.48
128.00 124 .06 125.09
29.00 27.29 29.40
129.00 128.65 126 .57
101.00 99.31 97.07
112.00 114.27 111.57
107 .00 111.74 111.63
143.00 117.70 115.08
13.00 13.72 15.85
121.00 120.66 120.73
58.00 52.59 53.89
112.00 109.61 105.14
126 .00 126.44 127.22
58.00 57.32 58.33
57.00 55.44 56.34
72.00 75.03 75.44
40.00 43.78 43.94
104 .00 110.12 102.14
113.00 114.60 114.50
110.00 96.93 94.99

are five parameters in one implication: 4 X 5 =20 al-
together. On the other hand, the number of data is only 61.

Results of Fuzzy Model: Table VI shows the results of the
fuzzy model, those of a statistical model and converter
outputs, when the models are applied for the testing data.

The statistical model is represented in (25), whose
parameters were obtained by linear regression using the
identification data.

AMn = —0.24HP + 8.64MA + 45.60. (25)

The performance indicies of the results of the fuzzy model
and the statistical model for 20 testing data are as follows:

7.15
7.77.

fuzzy model
statistical model

The results are better than those obtained by a statistical
model.

It should be noted that the fuzzy partition of the state of
slag, SG, derived from the data shows a good agreement
with that by an operator: he usually recognizes SG accord-
ing to a similar partition and uses this information in his
control.

Control of Converter: We now try to control the con-
verter by using its model. Given a desired output AMn*,
we can calculate a necessary input MA from a model. Here
for simplicity we use this MA instead of designing a fuzzy
controller.

The problem is how to compare the results of the
model-based control with those of an operator, because we
cannot make an experiment at present. Let us take as an
index of control performance

|AMn* — AMn|
AC = average of ——————
AMn*

where

AMn*
AMn

desired output

actual output.
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As for an operator’s control, this index is obtained from
input—output data since, given AMn*, he controls a con-
verter. Let us denote it AC,,.. In case of a model-based
control, we assume that the output AMn of a converter is a
desired output. Then we get the optimal input MA° from a
model, input MA® to a process and see its output AMn.
This output AMn can be estimated by taking into account
of the accuracy of the model without experiments. So we.
can set AMn = AMn + ¢ where ¢ is the error of the
model. Now we have

|AMn — AMn|
AMn

AC,, 4a = average of

average of error of the model.

We obtain the following results:

AC,_ 4q = 4.7 percent
AC,,. = 6.7 percent.

From the results we can expect that the control based on
the obtained fuzzy model gives us better results than the
present control by the operator.

Apart from the above method to calculate the input MA,
we can directly derive fuzzy control rules in this case from
the data (AMn, HP, SG) - MA. Those are shown in Fig.
25.

V. CONCLUSION

We have suggested a mathematical tool to fuzzily de-
scribe a system. It has a quite simple form, but it can
represent highly nonlinear relations as has been shown in
examples. An algorithm of identification has also been
shown and two applications to industrial processes have
been discussed. The applications as well as illustrative
examples show that the proposed method is general and
thus very useful. We can put the results of fuzzy measure-
ments by man such as “temperature is high” into the
premises of implications. Linear relations in the conse-
quences enable us to easily deal with this mathematical
tool, as we well know in linear systems theory.

However, to claim the validity of the method, more
studies have to be performed. The system theoretic ap-
proach is especially important. For example we have
minimal realization problems, decomposition problems, de-
sign problems of controller, etc. To solve these problems, it
is required for us to deal with fuzzy system representation
just as we do with a linear system.

In this paper, modeling of a human operator’s control
actions, rather than that of a process, has been mainly
discussed. It is, however, possible to apply the method
presented for the identification of a dynamical system.
Modeling of a multilayer incineration furnace, a dynamic
and distributed parameter system, is now under study.
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If HP is SGis
If HPis — > SGis
If HPis = = SG is
If HP is SG is

.01

Fig. 25.
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